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Abstract. In a quadratic number field Q(v'IP), D a squarefree integer, with class num- 
ber 1, any algebraic integer can be decomposed uniquely into primes, but for only 21 
domains Euclidean algorithms are known. It was shown by Cohn [5] that for D < -19 
even remainder sequences with possibly nondecreasing norms cannot determine the GCD 
of arbitrary inputs. We extend this result by showing that there does not even exist 
an input in these domains for which the GCD computation becomes possible by allow- 
ing nondecreasing norms or remainders whose norms are not as small as possible. We 
then provide two algorithms for computing the GCD of algebraic integers in quadratic 
number fields Q(VIP). The first applies only to complex quadratic number fields with 
class number 1, and is based on a short vector construction in a lattice. Its complexity 
is 0(S3), where S is the number of bits needed to encode the input. The second algo- 
rithm allows us to compute GCD's of algebraic integers in arbitrary number fields (ideal 
GCD's if the class number is > 1). It requires only o(S2) binary steps for fixed D, 
but works poorly if D is large. Finally, we prove that in any domain, the computation 
of the prime factorization of an algebraic integer can be reduced in polynomial time to 
the problem of factoring its norm into rational primes. Our reduction is based on a 
constructive version of a theorem by A. Thue. 

1. Introduction. The fact that the set of complex integers 

{x+ V'Ty I x,y E Z} 

forms a unique factorization domain (UFD) follows from the ability to perform 
divisions with remainder in this domain. Already C. F. Gauss generalized the 
complex integers to the domain of algebraic integers 

v'++/ y ] f 4D if D-2,3mod4, 
Od ={ + IY E Z, Z _=dymod2}, d={D if=D_mod4 

of a quadratic number field Q(v/iP), D a squarefree integer, and proved that a 
Euclidean division (and thus unique factorization) was possible for d = -11, -8, -7, 
-4,-3,5,8 and several more positive discriminants d. In general, an abstract 
integral domain R is Euclidean with respect to a degree function N from the nonzero 
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elements of R into the nonnegative integers if for any two elements a, ,B E R, I3 : 0, 
either ,B divides a, or there exists a (Euclidean) quotient -y E R and a (Euclidean) 
remainder p E R such that a = lb + p and N(p) < N(i). Once such a Euclidean 
division is constructible, the GCD of any two elements in R can be determined by 
repeated division. The Euclidean algorithm (EA) consists of computing for any 
two elements po, Pi E R a sequence of Euclidean divisions, 

Pi = Pi-2 -'_i-1Pi-11 i > 2, 

such that N(pi) < N(pi-1) or pi = 0, in which case GCD(po,pl) = Pi-1 In the 
cases of quadratic number fields mentioned before, the norm serves as a degree 
function for the Euclidean algorithm. In this paper we investigate the sequen- 
tial complexity for GCD computations and prime factorizations in any quadratic 
number field, including non-Euclidean ones. 

We measure the input size in terms of the rational and irrational parts of the 
inputs. Let 

2' 2 org= 2 EOd, 
and let 

size(() = log(IR(J) + log(JIIJ), 

which is the number of bits necessary to write down (. In our notation, the norm 
of (, N(, can be represented as follows: 

- x+yx/~ix-y rdi 2 xdy2 f (R~) 2-_(J~)2fodO 
N~ = ___= = kS+S fodOje Z. 

2 2 4 4 t 
(R)2 + (J(82 f d < O 

It is easy to show that Od is a Euclidean domain with respect to the norm for 
d = -11, -8, -7, -4, -3, but for no other d < 0, and for d = 5,8,12 and 13. There 
are exactly twelve more discriminants d > 0 for which Od is Euclidean with respect 
to the norm, namely 17, 21, 24, 28, 29, 33, 37, 41, 44, 57, 73 and 76 (cf. Chatland 
and Davenport [4] and Barnes and Swinnerton-Dyer [1]). 

Od is a UFD if and only if its class number h(d) is one. There are exactly four 
more imaginary quadratic number fields with h(d) = 1, namely d = -19, -43, -67, 
and -163. That this list is exhaustive was finally established by Stark [29]. It is 
conjectured that infinitely many real quadratic number fields have class number 1. 
The list of those d > 0 for which Od is not Euclidean with respect to the norm, but 
with h(d) = 1, begins with 53, 56, 61, 69, 77, 88, 89, 92, 93,.... 

By definition, the Euclidean algorithm (EA) with respect to the norm applies 
to po, P1 exactly if there exists a norm-decreasing remainder sequence (P1, ... I P.) 
with 

P2 = 
PoP-0lP1, P3 =P1 -Y2P2,i iPn = Pn-2 -An-1Pn-1i 

0 = Pn-1 - 'lnPn, 

where -Y, .... ,Yn E Od. The question arises, whether one can introduce another 
degree function with respect to which Od with h(d) = 1 becomes Euclidean. Even 
more generally, one may drop the condition that the remainder sequence be decreas- 
ing with respect to any degree function and ask if there exists any sequence of the 
form (1.1), norm-decreasing or not. Before discussing this question, we introduce 
some more notation. 
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Generalizing (1.1), we consider a (finite or infinite) sequence E = (po, Pi, P2,... ), 
where all pi E Q(v/di) (not necessarily E Od). We define 1 = 1(E) to be oo, if E is 
infinite, or n + 1, if E = (po,..., Pn+). Following Cooke [6], we call E a division 
chain, if 

(i) for all i, 1 < i < 1(E), there exists -yi E Od such that Pi+i = Pi-1 - IiPi; 
(ii) pi # 0 for all i < 1; if 1 < oo, then Pl = 0. 

The Euclidean algorithm in the most general sense consists of computing a divi- 
sion chain (po, p,.... n?Pn+1) and returning Pn, and every rule for specifying the 
choice of the remainders defines a version of (EA). If the norms of all remainders 
are minimized, that is, if for all i < 1, -yi is chosen such that N(pi+i) = 

N(pi- - -yipi) has the smallest possible value, then we call Z a minimal remainder 
division chain, the corresponding instance of (EA) a minimal remainder version of 
(EA). Notice that we thus relax (1.1) in that we allow remainders with norm larger 
than the corresponding divisors. We also apply the attribute 'minimal remainder' 
to the individual divisions; thus the terms 'minimal remainder quotient,' 'minimal 
remainder,' 'minimal remainder division' have the obvious meaning. In this paper, 
the elements -yj will always have the meaning specified in (i), whenever a division 
chain E is considered; for sequences Z', E", etc. we use 4,-y" etc., without defining 
these numbers. 

We now turn to the question raised above. First, consider the quadratic domains 
Od with d < -19. It is easy to show that the domains 0d, d = -19, -43, -67, and 
-163 are not Euclidean with respect to any degree function (Samuel [24]). Also, 
there exist Po, P1 such that no finite division chain beginning with Po, P1 exists 
(Cohn [5]). Thus there does not exist any version of (EA) which can compute 
GCD(po, p1). 

Our first group of results extends these facts. We show in Section 2 that if Z = 

(po, p,....) is an arbitrary division chain and E' = (po, p 1, p , P,...) a minimal 
remainder division chain, then 1(Z) > l(E'). Thus, nothing can ever be gained 
by choosing remainders whose norms are not as small as possible; neither can 
this reduce the number of divisions needed, nor does there exist even a single 
input (Po,P1) for which the computation of GCD(po,pi) succeeds by choosing a 
nonminimal remainder at some stage, but does not succeed otherwise. 

It has previously been shown for certain Euclidean domains that choosing mini- 
mal remainders with respect to the standard degree function minimizes the number 
of divisions. This was done by Lazard for Z and for K[x], K a field ([17]), and 
alsQ for 03 (private communication), and by Rolletschek [22] for 04. Here the 
standard degree function is the absolute value for the domain Z, the degree in the 
usual sense for polynomials and the norm for imaginary quadratic number fields. 
For d = -4, that is the Gaussian integers, Caviness and Collins [3] have adopted 
Lehmer's idea for integer GCD (cf. Knuth [14, ?4.5.2]), whereas Rolletschek [21], 
[22] established the equivalent of Lame's [15] bound on the maximum number of 
possible divisions necessary. 

Our second theorem from Section 2 says that in Od, d =-19, -43, -67, and 
-163, GCD(po, pl) can be computed by some version of (EA) only if a norm- 
decreasing sequence of remainders can be achieved. From this, the results of Samuel 
and Cohn follow as an easy corollary. 



700 ERICH KALTOFEN AND HEINRICH ROLLETSCHEK 

In the case d > 0, the situation is different. Under a generalized Riemann 
hypothesis, Weinberger [32] shows that every unique factorization domain Od, 

d > 0, is Euclidean with respect to some degree function, and in Cooke and Wein- 
berger [7] it is shown that a constant bound for the number of divisions can be 
achieved, namely 5. In fact, these results are shown for the rings of algebraic inte- 
gers in arbitrary algebraic number fields, provided there are infinitely many units. 
It is not shown, however, how one can efficiently construct these division chains 
and thus compute GCD's. 

There remains the need for efficient algorithms for computing GCD's in those 
quadratic domains which are not Euclidean with respect to the norm, both real 
and imaginary. We will describe two such algorithms in this paper. The first, to 
be presented in Section 3, only applies to the imaginary quadratic domains Od, 

d = -19, -43, -67 or -163. It is based on a short vector construction in a lattice. 
The number of binary steps needed to compute GCD((, r) is 

o(S3), S = size ( + sizerq. 

The polynomial bound would still remain valid for variable d < 0. In other words, 
a polynomial upper bound for the complexity can be proved without using the fact 
shown in [29] that only 4 non-Euclidean imaginary quadratic domains Od satisfy 
h(d) = 1. 

The second algorithm, given in Section 4, is much more general, because it 
applies to all quadratic domains Od, both real and imaginary, including those with 
h(d) > 1. In the latter case, ideal GCD's are computed in a certain sense, which we 
will specify later. The algorithm has quadratic complexity for any fixed d. However, 
it requires some preparatory work (independent of (, r), which is quite costly if d 
is large. It is not clear to us how to accomplish polynomial running time if d is 
not fixed. Concluding the discussion of GCD-algorithms, we wish to point out that 
an asymptotically fast algorithm equivalent to Schonhage's [27] integer-half-GCD- 
algorithm is still not described at this time. 

We next turn to factorization into primes. One realizes easily that an algorithm 
for factoring in Od can be devised which requires only an additional polynomial 
cost beyond the factorization of certain rational integers x. The reason is that a 
rational prime p either remains irreducible in Od, or factors into p = 71r7r2 with 
N71r = N7r2 = p. In this paper, we establish that from a factorization of Ne into 
primes P1 ... Pk we can construct for fixed d in deterministic polynomial time the 
factorization ( = 7r, -n. We solve this problem by using a constructive version 
of a theorem by A. Thue for solving the diophantine equation x2 - dy2 = zp in x, y 
and small z. This approach follows Shanks [28, Section 71], although our z is about 
the square root of the one obtained there. The main feature of this approach is that 
it does not require the computation of greatest common divisors in Od, which is 
the basis for another standard procedure to solve this problem. That our reduction 
is deterministic follows from a result by Schoof [26] and the fact that d is fixed. 

2. Properties of Quadratic Fields. The point of this section is to show 
that in imaginary quadratic domains Od, d < -19, one cannot speed up (EA) or 
increase the set of inputs for which (EA) works by allowing remainder sequences 
which are not norm-decreasing or remainders of nonminimal norm. First we recall 
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some well-known facts about quadratic fields, the proofs of which can be found, 
e.g., in Hasse's text [9, ?16]. Let 

1 
+2 v/ for d-1mod4, 

Wd 
~~2 

Wd- = \ \vr for d Omod4. 

Then the set { 1, wd} forms an integral basis for Od, that is, every element of Od 

can be represented in the form a* 1 + b . Wd, with a, b E Z. 
A unit ? E Od is an element such that 1/1 e Od. A necessary and sufficient 

condition for E to be a unit is that INdI = 1. For d < 0, the multiplicative group of 
units is generated by {V/'T} for d = -4, {(1+V(/=)/2} for d = -3, and {-1} in all 
other cases. For d > 0, there always exists a fundamental unit c1, RE1 > 0, Ic1 > 0, 
such that the unit group is generated by {-1, c1 }. Two elements '6, 62 E Od are 
associates, 6i -2, if there exists a unit c such that 6 = c42. For d > 0, any l 

has, according to [9], an associate 62 with 

jR2 ,jIi2 j1 < 2N(l I + ?1 

However, we will need a better estimate in Section 4. By X we denote the 

argument-function, which is defined for all complex numbers ( 7 0 by ( = I I 
(cos(q(()) + isin(q(())). We also need the analogous definition given in [9, 

p. 288] for elements of real quadratic fields: for d > 0, 0(e) is defined by ( = 

sign(()VNeOW; then X(() =-X((). Dividing 4l by a power ck of cl such that 

0(ck) is as close to q(61) as possible, we can also find an associate 62 Of 6i such 

that 1X(42)< ?(ci)/2. By adding and subtracting the equalities 

6 = sign(62) +IN 2Ie(e2), X 2 = sign(Z2) INIe(2)X 

we get 2JR621,2lI21 < ?/7IN~2I (ek(42) +e-O(42)), hence 

I R 6 1,i |I2 I1 < V/ el 21eI 0(42)1 < V/ N . 

We now discuss how rational primes p split in Od, h(d) = 1. If p I d, then p 1r2 

for some prime ir E Od. If p > 3 and the Legendre symbol (d/p) = (D/p) = +1, 

then there exists I E Z such that 12 =_ D mod p. Therefore, p I (I + v/iP) (1 - \/-) 

and thus p -7rT with ir = GCD(p, I + V). If p = 2 and d = D _ l mod 8, then 

2 11 '+X (1- 1 -X)/- 
2~~~ 

and thus 2 - rT with ir = GCD(2, 1- (1 + vD)/2). In all other cases, p is a prime 

in Od. 

We now come to the main results of this section, which apply to the domains 

Od, d =-19,-43,-67,-163. Although one would usually expect that minimal 

remainder versions require the smallest number of divisions among all versions of 

(EA), one might suspect that there are exceptional instances, where other versions 

terminate faster. The following theorem shows, however, that this is not the case 

in those imaginary quadratic fields under consideration. 
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THEOREM 2. 1. Let Q(Vd) be an imaginary quadratic number field whose corre- 
sponding number ring Od is a UFD without a Euclidean algorithm with respect to the 
norm, that is, d has one of the values -19, -43, -67, -163. Let Z = (po, P1, P2, ... ) 
be an arbitrary division chain, and let >' = (Po, Pi, p2 , p', . . . ) be a minimal remain- 
der division chain beginning with the same two elements po, p1. Then 1(S) > l(E'). 

Proof. We apply a technique developed in Lazard [17] and in Rolletschek [22]. 
In what follows, we call a division chain > = (Po, P1.... ) a counterexample, if 
there exists a sequence E' = (Po, P1, p2 . . . ) such that the assertion of the theorem 
does not hold. Since the theorem is trivially true for 1(S) = oo, we may apply 
induction on 1(E). Thus assume that E = (Po,Pli,... Pn+l) is a counterexample, 
but that the theorem is true for every shorter sequence in place of E. Let E' be 
a minimal remainder division chain for po, P1 with 1(E) < l(E'). Then n > 2 and 
P1 :$ p2, otherwise (P1l P2 * * Pn+1) would be another counterexample, contrary 
to the induction hypothesis. Without loss of generality we may make the following 
three assumptions: 

(i) All remainders in >, except possibly P2, are minimal. For otherwise we 
could have considered a minimal remainder division chain (Pi P2 P3 ...) whose 
length k, by induction hypothesis, would have to be no more than n; but then 

(PO, P1l P2, P3 X... * P11+l) would be another counterexample which would also satisfy 
(i). 

(ii) -A = 0; otherwise we could replace po by po - -IY'p, -y1 by 0, to get a 
counterexample satisfying (ii). 

(iii) p1 = 1; otherwise we could divide PO,... ,pn+l by p1 to obtain a coun- 
terexample satisfying (iii). It is here that the consideration of nonintegral values of 
PO,... makes the proof more convenient. 

It follows from assumption (ii) that 0 is one of the algebraic integers in Od closest 
to Po = P2. Hence, po must lie in a region R1 = {oa I a E Q(Td), laI < 1a - I 
for all 'y E Od}, which is shown in Figure 1. Since P2 4 p2, we have -Yl $& 0. We 
consider the various possible values of y)1* In several cases we have to consider the 
value of P1/P2 = l/P2, and we denote this value by 6. 

(a) 7y = 1. Then P2 lies in the region R2 which is constructed by shifting R1 
to the left by 1; R2 is bounded by the straight lines -3/2 + yi and -1/2 + yi 
(y E R), and four additional straight lines. Hence, 6 certainly lies within the region 
R' shown in Figure 2; here the circles Cl, C2 are the sets of inverses of all points 
of the form -1/2 + yi and of the form -3/2 + yi, respectively. 

Now recall the definition of the element wd at the beginning of this section. We 
need the fact that Iwd > 2. 6 has a distance < 1 from -1, but a distance > 1 from 
all lattice points outside the real axis. Hence -N, which is a minimal remainder 
quotient of P1 and P2 by assumption (i), and which is therefore one of the elements 
Of Od closest to 6, can only have one of the values 0, -1 or -2. Correspondingly, 
we have to consider three subcases. 

(al) -f2 = 0. Then the sequence E starts with (po, 1, po -, 1,pO, p5,. .. ), since 
the minimal remainder of po - 1 and 1 equals the minimal remainder of po and 
1. (More precisely, we may assume without loss of generality that p4 = Po by 
the same argument as in the justification of assumption (i), although there may 
be several minimal remainders of po and 1.) We now consider the division chain 



COMPUTING GCD AND FACTORIZATIONS IN QUADRATIC NUMBER FIELDS 703 

R1 

-1/2 0 1/2 1 

-Co)d 1-Coa d ~~~~~d 

FIGURE 1 

FIGURE 2 

= (PO 1, Po, P5 ... X Pn+1 1. 3"' is actually a minimal remainder division chain, 
though not necessarily identical with E' = (PO, 1, Po, p ) We can apply the 
induction hypothesis to the sequences formed from >"' and E' by omitting their 
first elements; since >' is also a minimal remainder division chain, it follows that 
l(E') < l(>3"') = n - 1, contradicting the assumption that n + 1 = l(S) < l(E'). 
This concludes the proof of the theorem for this case. 



704 ERICH KALTOFEN AND HEINRICH ROLLETSCHEK 

(a2) -)2 =-1. In this case, E starts with (po, 1, po - 1, Po, p4,. ..). Again, we 

construct a division chain E"' shorter than Z: 

E = (Po l, Po, -P4, P5, . . ., (-l)fPn+l), 

this time using the fact that 1 mod po = -((po - 1) mod po). Then we can show as 

in (al) that the given minimal remainder division chain E' satisfies 1(E') < l(Z"') < 

l(E), a contradiction. 
(a3) -2 = -2. The sequence E starts with 

(po, 1, po-1, 2po-1, po(1-2-3) + (-1 + '3), Ps,p 6, ) 

We put 

"'= (po, 1, po, 1 - 2po, po(-1 + 2''3) + (1 -3) -P5 -P6, ... ), 

choosing "' = )'33-1. In this case, l(E') < 1(E"') = 1(E), a contradiction. 
(b) ej1 = -1. This case parallels (a) completely, only some signs have to be 

changed. 
(c) -j = 2. As in case (a), we can determine the set of all possible values of 8; 

it is the region R' shown in Figure 3. 

i/2 

-2/5 
0 

-2/3 

FIGURE 3 

It follows that 72 can only be 0 or -1. The case 2 = 0 is treated as in case (al). 
Assume 72 = -1. E now has the form 

(po, 1, po - 2,, po - ipo(l - '3) + (-2 +'y3), p5, ..., ), 

and the sequence E"' we construct has the form 

(PO, 1, pol 1 -p PO,P(-1 + ty3) + (2 - y3) -P5i .. * * ),I 

where we choose -"' = -2 + -3. Then l(Y"') = l(E), and the rest of the proof 

parallels previous cases. 
(d) -j = -2. This case is analogous to (c). 
(e) -j is real, I1jI > 3. Then IP21 = I PO - 'lI > 2, hence 161 < 1/2. Then 72 = 0, 

and the assertion of the theorem follows as in (al). 

(f) eYj is not real: -j = a + bi with b :$ 0. We show in all cases II(P2)1 = 

II(po - e,)j > 1. Indeed, the minimal absolute value of I(po - Y,) occurs with 

d = -19, 'Yl = Wd and po = ~, as pictured in Figure 1, and in this case II(P2)1 > 1. 
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FIGURE 4 

Figure 4 shows the region R', which is the set of all inverses of complex numbers 
a with I1(a) I > 1, and which contains the set of all possible values of 6. Again it 
follows that the element -N E Od closest to 6 can only be 0, so E = (po, 1, po - 

-Yl p44. * *). But now, E"' = (po, 1, p4 ... .) is a shorter division chain than E, leading 
to the same contradiction as in the previous cases. 

The cases (a)-(f) are exhaustive, completing the proof. El 
The condition d < -19 in the previous theorem is used in the estimates in the 

cases (a) and (f) in the above proof. Remarkably, the statement of the theorem 
(without the assumption of Od being non-Euclidean) fails for d = -11, but it 
remains valid for all other Euclidean imaginary number fields, as was recently shown 
in [23]. 

In algorithm-theoretic terms, Theorem 2.1 can be formulated as follows: 

COROLLARY 2.1. Let d be as in Theorem 2.1. Then: 
(i) All minimal remainder versions of (EA), applied to Po, Pl, require the same 

number of divisions, and no other version requires fewer. 
(ii) If no minimal remainder version of (EA) allows the computation of 

GCD(po, Pl), then no division chain terminates with GCD(po, Pi). El 

While Theorem 2.1 and its corollary deal with divisions where the remainder 
has nonminimal norm, the next theorem shows that nothing is gained by allow- 
ing divisions where the remainder has norm greater than the divisor, even if that 
remainder is minimal. In other words, if a minimal remainder version of (EA), 
applied to Po, Pl, leads to a division where no remainder with norm smaller than 
the divisor exists, then every version of (EA) fails for this input. 

THEOREM 2.2. For anyd < -19, h(d) = 1, and for all po, pl E Od, there exists 
a sequence -Y1, . . ,Yn E Od satisfying (1.1) only if a norm-decreasing sequence with 
this property exists, that is, if the common version of (EA) applies to po, Pl, where 
the remainder of each division has smaller norm than the divisor. 
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Proof. Consider a minimal remainder division chain E = (Po, P1, P2, ...), and 
assume that (P1, P2,...) is not norm-decreasing. We will show that there exists an 
infinite minimal remainder division chain E' starting with po, P1. Similarly as in 
the proof of Theorem 2.1, a number of assumptions can be made without loss of 
generality: 

(i) INp21 > IjNpj; 
(ii) p1 = 1; 

(iv) Rpo > 0, Ipo > 0. 
The justification of (i) is immediate. For (ii) and (iii), see the analogous assumptions 
in the proof of Theorem 2.1. Finally, (iv) can be justified by symmetry; in the 
following proof only some signs and limits for N(po) would have to be changed if 
Rpo and/or Ipo is < 0. We note in passing that an assumption analogous to (iv) 
could also have been made in the proof of Theorem 2.1, but its justification would 
have required a few lines, and the rest of the proof would not have been simplified. 

We have P2 = po by (iii), N(po) = N(p2) > 1 by (i) and (ii). By (iii), 0 is one of 
the algebraic integers in Od closest to po = P2. Together, these facts imply that po 

lies in the region shown in Figure 5. 

A d 

0 1/2 1 

FIGURE 5 

It follows now that 7r/3 < q5(po) < 7r/2, hence 6 = l/po satisfies -7r/2 < q(5) < 

-r/3; also, N(S) < 1. Then one of the algebraic integers -2 E Od closest to 6 is 

0. Choosing -2 = 0, we get p3 = 1. Hence, the following is a minimal remainder 

division chain: 

St = (po) 1, po, 11 PO) .. .) 

This sequence is infinite, as desired. By Theorem 2.1, every division chain starting 

with po, Pi is infinite, so no version of (EA) can terminate. 5 

COROLLARY 2.2. The domain Od, d < -19, h(d) = 1, is not Euclidean for 
any choice of degree function. 

Proof. Recall that for d < -19, Od is not Euclidean with respect to the norm. 

This means, by definition, that there exist elements po,Pl E Od such that every 
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remainder of p0 and P, has larger norm than Pi. Thus, if E is a minimal remainder 
division chain beginning with po, Pi, then (Pl, P2, ... ) is not norm-decreasing, and 
by Theorem 2.2 no finite division chain beginning with po, Pt exists. The assertion 
follows. 0 

3. GCD Computation by Lattice Reduction. As we have seen in Section 2, 
not all quadratic fields with unique factorization allow a Euclidean algorithm, e.g., 
Q(iFT/) and Q(V5-). Therefore, a different GCD procedure is required for these 
domains. Our first algorithm for imaginary quadratic fields is based on computing 
short integral lattice vectors and is interesting for two reasons, even though the 
algorithm in Section 4 has lower asymptotic complexity. First, it does not require 
any field-dependent preconditioning, and second, its running time is polynomial, 
independently of the fact that Idl is known to be bounded. The main idea of the 
algorithm is to solve A + Muq = 0 such that N,u is small. The following lemma will 
be useful. 

LEMMA 3.1. Let (,rq E Od, d < -19, h(d) = 1, (rq $ 0, 6 = GCD((,), 

6= (/, 2* = r/6. Assume that Ad + ?r = 0, A, , E Od. Then q* IA, (* Iu. 
Furthermore, if A is not an associate of rq*, then N,u > 4N(*. 

Proof. Since A(* = -,* and GCD((*,,*) = 1, all prime factors of r* must 
occur in A, and similarly for (* and ,u. Since 2 and 3 are primes in any Od in 
question, N(,u/(*) > 4. 0 

We consider the case d _ 1 mod 4 only, since only this one occurs. Let A = 

(11 - 12/2) + V/ril2/2, e = - X2/2) + vdX2/2, MU = (ml - m2/2) + /dm2/2, 
r1 = (Yl-Y2/2) + ? Y2/2 with 11,12, ml, m2, xl, x2, Yl, Y2 E Z. Then 

4R(Ae + i,ur) = (4x, - 2x2)l1 + (x2 - 2x, + dx2)12 

(3.1) + (4y1 - 2y2)ml + (Y2 - 2yi + dy2)m2, 

2I(A 4+ i) = X211 + (X1 - X2)12 + y2ml + (Yl - y2)m2. 

We want to find integers 11, 12, m1 and rn2 such that the right sides of the equations 
(3.1) are 0, meaning that for the corresponding A and ,u, A + Mu7 = 0. Simultane- 
ously, we want to keep N,u small because the smallest such Mu is an associate of (* 
by the previous lemma. This leads to the problem of finding a short vector in an 
integer lattice. The next theorem shows that only associates of (* can correspond 
to short vectors in a particular lattice, and thus finding a short vector in that lattice 
with a reduction algorithm actually gives (* and hence 6 = 

THEOREM 3.1. Let Od be a UFD with d < -19, and let = (X1 - x2/2) + 

vfidx2/2 and rq = (Yl - Y2/2) + v/diiy2/2 be two nonzero elements of Od. Let c and 
d be integers such that c > Vf7Nj, 1ViJf - dI < 1/2. Furthermore, let L* be the 
4-dimensional integer lattice spanned by the columns of the matrix 

-c(4xi- 2X2) C(X2 - 2x1 + dx2) c(4y - 2Y2) C(Y2 - 2Y1 + dy2) 

L CX2 C(X1 
- X2) cy2 C(Yl- Y2) 

L 4 0 2 -1 . 

L O0 0 0 d 
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Then, if V* = L x [ll,l2,ml,m2]T $ 0 is a vector of shortest Euclidean length 

in the lattice L*, then 1 = (ml - m2/2) + /dm2/2 must be an associate of (* = 

(/GCD((, ). Furthermore, if v E L* \ {0} does not have shortest Euclidean length, 

then 11V112 > I 
IIV* 112. 

Proof. Since 

det [4x 2X2 X2 -2x+ + 2] = (2 +X2)2 -dX2 > 0 x1x2$O 

L Xl1-X2j2XX2 
0 

L is of full rank. With A and ,u as above, we get from (3.1) that 

1, [ 4cR(A . + ,u) [W 1 

L x 12 2cI(Ad + ,u)/vfd V I 2 E Z4. 
M[ 2m1-m2 1V3 

LM2 J L dm2 I Lv4 J 

We now estimate the Euclidean length llvll of v $ 0. If Af + Mu $ 0 then 11V112 > 

c2 > 12N(. In case A(+[uq = 0, we have v, = I2 = 0, and we get from I Idl -d2 I <d 

d/ldl < 1/4, d < -19, and m2 < 4N,u/Idl that 

I IIII2 - 4N,I = 1(2m, - m2)2 + d2m2 - ((2m -m2)2 - dm2) 

(3.2)4N1 
(= Id Idl m2 - dm2 < 

Idl 

From (3.2) we conclude that 

(3.3) 3Nu < 11112 < 5N,u for Af + Mq = 0. 

Therefore, under the assumption that ,u is an associate of (* and Af + ,u = 0, the 

corresponding vector v/* satisfies IIv* 112 < 5N,u = 5N(*. Otherwise, Lemma 3.1 

states that N,u > 4N(*, and thus we get from (3.3) 

ggzVg12 > min(12N(, 3N,u) > 12N(* 

Therefore, 

gI,V|12 > 12N(* > 5 glv,* I 5 
which proves the theorem. 5 

The algorithm for computing the GCD of ( and q is now easy. One computes 

a vector in the lattice L* whose length is within a factor C3/2 of the length of 

the shortest vector, where C is a constant with C > 4/3 and C3 < 12/5, e.g., 

C = 83/62. There exist several versions of the basis reduction algorithm by A. 

K. Lenstra et al. [18], cf. [12]. Already the original algorithm [18] can find such a 

vector. Since the dimension is fixed, all these algorithms take O(size3 ,q) binary 

steps to compute such a vector (slightly less, if fast multiplication is used). But by 

Theorem 3.1 such a vector must be a shortest vector whose entries determine an 

associate of (*. We then obtain 6 = GCD((,rq) = 

4. Greatest Common Divisor Computation. We present a GCD procedure 

that works for all quad,ratic domains. It turns out that one can always divide an 

appropriate multiple 1, 1 E Z, of the dividend ( by q and accomplish a remainder 

of norm smaller than INq . Moreover, the size of 1 only depends on d and not on 

or r. This fact was shown for arbitrary number fields by Hurwitz, see [11, p. 237]. 

The following lemma provides the specific bound for 1 for quadratic number fields 

Od. It is not restricted to the case h(d) = 1. 
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LEMMA 4. 1. Let c E R, 1/2 < c < 1, Od be the ring of integers in a quadratic 
number field. Then for all (, t7 E Od, there exists an I such that 

lEZ with1?<l<[jjJ, 

and there exists a -y E Od with 

(4.1) JR(1177 - 17) I < 2 V(10/t - tY) < c. 

Furthermore, if d > 0, then jN(lI - p7)l < c2jNtfj; if d < 0, then jN(lI - -rt)1 < 

(c2 + 1/4)INrl. 

Proof. This follows from the theory -of approximation of real by rational num- 
bers and the theory of continued fractions. We apply Theorem 171 in Hardy and 
Wright [8]: if pn/qn and Pn+l/qn+i are the nth and (n + 1)st continued fraction 
approximation of a real number x, then 

Ix Pn | < 
1 1 

qn qnqn+l q 

We apply this theorem to x = I(O/r)/I(wd) = I(;/r7)/(V/f1i[2), and a continued 
fraction approximation Pn/qn of x such that qn < x/[d4/2c and either Pn/qn = x or 

qn+1 > /|d|/2c. Then 

I(0/r1) Pn 1 c 

VId /2 qn| qnqn+l qn/2 

hence 

|qn - Pn2)| = qnI(/7) -Pn 2 C. 

Then (4.1) is satisfied for I = qn, -Y = PnWd + LR(qnV?7 - PnWd + 1/2)J. 
Now let r = l4/r - -y. For d > 0, 

INrI = jR(7)2 - I(7)21 < max(R(r)2, I(r)2) = C2. 

For d < 0, 

INnr = R(r)2 + I(r)2 < c2 + 1/4. 
Then the second statement of the lemma follows by multiplying these inequalities 
by IN771. o 

This lemma suggests the following algorithm for computing GCD's in arbitrary 
quadratic domains. We formulate it first for those d with unique factorization. At 
the end of this section we will discuss how to adapt it to apply to the case h(d) > 1. 

Preconditioned GCD in Od. 

Input: , 77 E Od, Od a UFD. 
Preconditioning: Given are the prime factors of 1 = 2,.. ., m = L[/jH[j in Od, 

Ir" ...l 7r el k 2 < I < m, ei,j > O. 

If d > 0 we furthermore are given a fundamental unit C1. 
Output: 6 = GCD(, 771). 
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Step 1: H r- 0; Po ; Pt - 7. 
FOR i -1, 2,.. . WHILE pi :#O DO step 2. 
Step 2: Here we carry out a "pseudo-remainder" step, that is, we compute 1i+1 E Z, 
1 < 1i+1 < m, and -yi+l E Od such that 

JN(1i+1pi_1 - yi+lpi)l < 1 
INpil 

Set (xi + yi@v')/2 +- Pi-l/Pi where xi, yi E Q 
Determine 1i+1 satisfying Lemma 3.1 for c = 1/2 as follows. Compute the nth 
convergent pn/qn of the continued fraction approximation for yi such that qn < m 
and either Pn/qn = Yi or qn+l > m. 
Set i+1 +- qn; Yi+1 +- Pn. At this point li+1yi - Yi+1 I < 1/v/2. 
Compute xi+1 E Z such that 

xi -(dyi+1 mod 2) 1 
2 xi1 

Set yi+ 1 xi+ 1 + (dyi+ 1 mod 2 + yi+ 1 V) /2. 
Set Pi+, 1 ii+lPi-1 - i+1pi; H H II U {rj 1 < j < k, e1j > 1}. 
At this point INpi+1I < INpi1/2. 
IF d > 0 and INpi+ I : 1 THEN: 

We adjust Pi+, such that Rpi+1 and Ipi+1 do not become too large as follows: 
Compute k > 0 such that kk(Ek)) _ k(p,+i)I < 0(el)/2. 
Set Pi+, +- Pi+1/61. At this point IRpi+1I and JIpi+1I are both < /Np`+iL 
v(e1. (Refer to Section 2 for an explanation of these facts.) 

Step 3: Remove extraneous factors from Pi-1 introduced by the Ii. 
Set 3 +- 1. FOR 7r E H DO 

Compute the maximal e, f such that 7re 7 irfj1. 
Set , +i x 7rmin(ejf); Pi-1 < pi_1/min(ef). 
WHILE 7r pi-, DO pi-, ' Pi-1/TX 

RETURN 6 + pi-1. 5 

If one also needs the extended Euclidean scheme (+rr7 = 6, it suffices to set a = 

(s1 + Vds2)/2, r = (t1 + Vdt2)/2, si -ds2 = 2s3, t1 -dt2 = 2t3, and solve the four 
resulting linear equations with integer coefficients in the integers s1 X S2 33, t1, t2, t3 
by some integer linear system solver, see Kannan and Bachem [13]. 

It is easy to show that for fixed d this algorithm has time complexity O(S3), 
where S is the size of the input, defined in Section 1. Some additional effort 
is needed to show that the complexity can be improved to O(S2), and lastly to 
determine the complexity in dependence of d. 

THEOREM 4.1. After input-independent preconditioning, the GCD of (, 77 E 

Od, Od a UFD, can be computed in 

-O(SV'dI(log d)(S + V/[ dlog d)), S = size ( + size 77, 

binary steps, using classical integer arithmetic procedures. 

Proof. This can be shown similarly as for the Euclidean algorithm applied to 
rational integers (see Knuth [14, Exercise 30 of ?4.5.2]), but the details are somewhat 
more involved. We have to analyze the preconditioned algorithm, and also to apply 
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some minor modifications. In what follows, we mean by 'constant' some quantity 
that is independent of ( and q, though it may still depend on d. First we have to 
consider the number of iterations of Step 2. It follows from INpi+ I < INpi 1/2 that 
this number is bounded by log iNp1 I + 1, which is O(S). 

Second, we have to establish an upper bound for the size of the remainders 

P2, P3, etc. Because of the adjustment of Pi+, at the end of each iteration of 
Step 2, applied for d > 0, there exists a constant C, such that both IR(pi+,)l and 

1I(pi+-)l < CiVINpi+1I < CiVINp`l, where C, = 0/5 (see Section 2). Thus, 
size pi = O(S + log e1), without fixing i. Moreover, e1 < dV'dl (cf. Hua [10]), thus 

log(el) = 0(V/_7T log IdI).*** We will also need the constant C, in the following 
paragraphs. 

It is now easy to analyze the complexity of Step 3. We assume that the mul- 

tiplications fi +- -.rmin(ef) and divisions Pi-, +- pi_i/min(ef) are replaced by 
sequences of multiplications i +- /3. 7r and divisions Pi-1 +- Pi-l/r, which does not 
reduce the complexity. Then, apart from the final multiplication 6 +- fpi-1, Step 3 
consists of a sequence of divisions and multiplications, where one of the operands has 
size 0(5+ V//[ log d) while the other is a prime factor of a rational integer I < VIH . 
Such a prime factor is either a rational prime p < V/[_j, or an element ir E Od with 

IN7rI < V/Fdi. In the latter case, 7r will also have been adjusted by multiplication 
by an appropriate power of e1, so that size(7r) = 0(log jd?+loge1) = 0(Vd4logd). 
Thus each operation requires 0((S + V/[dT log d) V/I log d) steps. Notice that 
whenever a division a/IV is performed, No must be computed, which takes only 
0(d(log d)2) binary steps, since / will always be the second type of operator, with 
size 0(V/rjdj log d). The number of multiplications and divisions to be performed in 
Step 3 is easily seen to be O(z), where z is the sum of the number of prime factors 
of (, r, and Pi-X, which is O(S). In the final multiplication 6 +- pi-l both factors 
have once again size O(S + V/dH[ log d). Thus the total complexity of all operations 
in Step 3 becomes 

0(S(S + oJdilog d) JIIlog d+ (S + V log d)2) = 0(S(S + V/jlog d) V'dilog d). 

It remains to analyze the complexity of Step 2. 

If we compute the exact representation of xi and yi, then this calculation would 
take O(S2) steps for a fixed d, which is too much to guarantee the desired overall 
complexity for all iterations. However, it suffices to compute floating-point approx- 
imations for xi, yi, with an appropriate upper bound for the absolute error, 0.01 
say. Then instead of INpi+1/ < /Npi /2 we will accomplish /Npi+1 < C2 Npil 
for some constant C2, - < C2 < 1. This does not affect the analysis as far as 
asymptotic step count and bit sizes are concerned. Notice that the floating-point 
approximations are thus local to Step 2, and no error gets propagated to the next 
iteration. The exact values of xi, yi are 

2RpPiRp- ? IPi-lIpi = 
~~Npi 

***Unfortunately, by the Brauer-Siegel theorem [16, Chapter XVI], not a much better estimate 
for log(Ei) is to be expected, since h(d) log(El) > d1/2-e for d -. oo. 
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with the + sign applying for d < 0, and 

yi = 2- Rpi1jIpi + Ipi_1Rpi 

Let Ai = log I-Np'i I - log -Np2j. The numerators of xi and yi have absolute 
values < 2C22 INpi_ I INpiI. Hence, there is a constant C3 such that log Ixi, 
log jyj I < Ai + C3, and a constant C4 such that the desired accuracy for xi, yi is 
guaranteed, if Ai + C4 significant digits of both numerator and denominator of xi 
and yi are computed, and floating-point division is applied. 

For the following sufficiently accurate error analysis we need to introduce a vari- 
ant of the definition of size(a) (a E Od) given in the introduction. (The previous 
definition is insufficient because size(a + av/d) can be roughly 2size(a) (a E Z), 
whereas we will need a bound for size(a + av/d) - size(a) that is independent of a.) 
Define 

sizei (a) = max(log I Ra l, log Ia). 

Now the relation IR(pj) I, II(pj)| < C? 0 Np also allows us to find another constant 

C5 such that 

(4.2) size, (pj) - log Np I < C5. 

Therefore, at most 2C5 leading digits can cancel out when the subtraction in the 
calculation of Npj is performed. Applying (4.2) to j = i - 1 and to j = i, Ai 
can be estimated by (sizelpip - sizelpi) within an error bounded by a constant 
bound C6; so the number of digits that ultimately have to be used is (sizepip& - 

size,pi) + C4 + 2C5 + C6 = B. Note that B, contrary to Ai, is known before xi, yi 
are computed. As pointed out, C, = O(V'51). Then it follows that C3,... ,C6 
are all of size 0(logej), which is O(V/[j[logd), as stated above. Hence B = 

O(Ai + V/[d[logd). All arithmetic with B-digit precision can be performed in 

O(B2) = 0((Ai + V/1[logd)2) = O(A? + IdI(logd)2) steps. The total complexity 
of all these operations for all iterations of Step 2 is therefore 

O (A + 
0Sd(logd)2 

O(S(S + Idl(logd)2)). 
i>1 

Floating-point arithmetic only applies to xi and yi, not to other intermediate results 
like Pj, qj (j = 1, ... , n), xi+1 etc. We now consider the complexity of the remaining 
operations in an iteration of Step 2. The continued fraction approximation Pn/qn 
of yi can be calculated as follows: from the B-digit floating-point representation of 

yi we obtain a fractional representation s/t, s, t E Z, where s has B digits and t 
is a power of 2. Note that Iy I canpot be larger than its B-digit mantissa s, since 
B was large enough to guarantee an absolute error < 1. If lyil < 1/1V'[/, then 
instead of computing continued fractions we may simply choose 1i+j = 1, Yi+1 = 0, 
which satisfies the required inequality Ili+ yi- yi+ i < 1/ /ITd. If not, then both 
log(s) and log(t) are 0(Ai + x/idlogd). If 91, 92 are the quotients of the Euclidean 
algorithm for rational integers with nonnegative remainders, applied to s, t, then 
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the numbers pi, qi are determined by the following recurrence relation: 

p-1 =qo =0, q,=po =1, 

Pi =Pi-2 + giPi- 12 
qi= qi-2 + giqi-l 

From these equations it becomes clear that 
n 

log(gi) = O(logqn) = O(1og09 N)d 
i=l 

and since the intermediate results of the Euclidean algorithm applied to s, t, as well 
as the numbers pi, qi have O(Ai + x/lij log d) digits, we find by the usual method 
that O((log d) (Ai + x/[ [ log d)) binary steps are needed for the calculation of Pn, qn . 

The logarithms of the rational and irrational part of -yi+1 are O(Ai + x/[-j log d), 
since -yi+1 is an approximation of li+lpi-1/pi. This ensures the desired complexity 
bound O ((Ai + V/ [[log d) (S + V/ dlog d)) for the multiplication -yi+ 1 Pi in the 
computation of Pi+,. Then the same bound for the order of magnitude applies 
to the logarithms of Xi+l,Yi+liPlt,... ,Pn. The only step which requires further 
consideration is the division of Pi+, by an appropriate power of e1. 

Consider first the value pi(o)2 of Pi+, before this adjustment. Recall that po)= 
pir, where IRnI, JITI < 1 (actually < 2 if the exact values of xi, yi are used). This 

implies size1pM(1 < sizelpi + C7 for some constant C7 with C7 = O(log Idl). Let 

Pit) be the value of Pi+, after the adjustment. Then q$(pO)) - O$(Pi+)01) + kq(el) > 
(k - 1)0(e1). Together with the defining equality for the argument function 0, this 
implies k = O(Ai). We can proceed as follows: first, if Rpi+l < 0, replace pM)1 by 

-pM ) Then, if Ip$j+9 > 0, compute pi?) = p Ijjl)/ei, j = 1 2, ... until Ipio)< 0, 

so that qpi$p7l) > 0, qpij+) < 0, then choose among p(jo-') and p(jo) the one for 
which the rational part, or, equivalently, the absolute value of the irrational part, is 
smaller. If instead after the possible replacement of pi)1 by -p (0) we get IpM?1 < 0, 

compute similarly pi+, = p(jj+-)6 l = 1,2, .. ., until Ipi(+) > 0. The number of Pi+1 Pi+l i~~~~~~+1 - 

divisions is O(Ai), and each division has complexity O((S + VIfdf log d) /fI dlog d). 
We conclude that the highest asymptotic complexity within Step 2 occurs for 

the adjustment of Pi+1, namely O(Ai (S + V/fi[ log d) x/f-i log d). Adding this up 
for i = 1,2,..., we obtain 0(S(S + V/7dflogd)V/Idflogd). We have established 
that this is indeed an upper bound for the complexity of all operations, including 
Step 3. This completes the proof. O 

Omitting the adjustment of Pi+, does not affect the correctness of the algo- 
rithm. In this case, it is not obvious, however, that the complexity O(S2) can 
still be achieved for fixed d. Moreover, it is in any case desirable to carry out this 
normalization at least for the final result. After all, if GCD((, r7) = 1, it would be 
unsatisfactory to obtain some power ?ek, k # 0, as output. 

We now discuss how the preconditioning for this algorithm can be done. For the 
calculation of the fundamental unit e1 in the case d > 0, there exists the well-known 
algorithm using continued fractions. An improvement has been provided in Pohst 
and Zassenhaus [20]. The factorization of the multipliers I < /iiH[ will begin by 
finding their factorization into rational primes p. Using the sieve of Eratosthenes, 
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the largest prime factor for every I can be found in time O(V/jH[), which essentially 
solves the problem. Then it can be determined efficiently, using the law of quadratic 
reciprocity, which of these rational primes p split further in Od; see Section 5. One 
of the referees suggests the following algorithm for finding the prime factors -NJ 
and 72, if p splits further. The idea is to explicitly find the transformation from 
the quadratic form (1, 0, -d/4) or (1, 1, (1 - d)/4), whichever is integral, to a form 
(4p, 91, 92), all of discriminant d. Consider first the case d _ 0 (mod 4). Then the 
transforming matrix M = [a ] yields the solution a2 - d -2 = 4p, the wanted 
factorization. For d 1 (mod 4), the matrix M yields (2a + #)2 - d#2 = 4p as the 
solution. In order to compute M, one appeals to the theory of reduction on the 
principal cycle of reduced quadratic forms of discriminant d (cf. [25, Section 4, pp. 
256-261]). One starts at a form (4p, 91, 92) or (p, 91, 92) of discriminant d, which 
is easily determined, using an algorithm for taking square roots modulo p. Then 
one steps through the principal cycle by repeated reduction until one detects the 
forms (1, 0, -d/4) or (1, 1, (1 - d)/4), respectively. For each prime p, the running 
time depends on the number of forms in the cycle, about 0(dl/2+e), such that the 
procedure for all primes < x/[l[ takes O(dl+e). 

We conclude by briefly discussing the application of this algorithm to domains 
Od with h > 1. The algorithm itself does not change, except that prime ideal 
factors of (1) for the multipliers I have to be considered, rather than prime factors 
of 1 in Od. What does it accomplish? Of course, it would be a trivial task to find 
a representation for the greatest common divisor of the ideal (() and (rq), as ((, r) 
would already be such a representation. Instead, it is desirable to put it into some 
normal form. Let {II, . .. , Ih } be a set of representatives of the ideal classes. As is 
well known, the Ii can be chosen such that 

v?X for d > 0, 

for d < 0 

where I{11 is the number of congruence classes mod I. Then every ideal of Od has a 
unique representation of the form (a)/Ij, a E Od, 1 < i < h. The GCD algorithm 
can now be used to compute the normal form of ((, r). The following preparatory 
work is needed: one has to compute the normal forms of the ideal prime factors of 
1, 1 = 2,..., L\'iiJ , and a multiplication table for the normal forms of the ideal 
products Ii Ij. The latter problem is equivalent to the computation of the class 
group and can be done in time IdIl/4+o(l), see Schoof [25]. The factorization of the 
ideals (I) is at least as difficult as in the case h(d) = 1. After this preparatory work 
has been finished, the complexity bound of Theorem 4.1 applies again. 

5. A Constructive Version of a Theorem by A. Thue with Applica- 
tion. A theorem by Axel Thue [3p] states that if a and m are positive relatively 
prime integers, then there exist integers 0 < x < /@, 0 < IYI < Vfh such that 
ax + y 0 mod m. This theorem and its generalizations (cf. Brauer and Reynolds 
[2] and Nagell [19]) are usually proved using the pigeon hole principle. The fol- 
lowing theorem shows how all solutions for the above congruence can be found in 
O(log2 m) steps. 
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THEOREM 5.1. Let a > 1, m, e, f > 2 be integers such that a < m, (e -1). 

(f - 1) < m < ef. Then the problem 

(5.1) m I ax+ y, 0 < x < e, yIY < f, Y# ? 

is solvable in integers x, y if and only if d = GCD(a, m) < f. Furthermore, assum- 

ing that this is the case, let 

Po _ P1 PN a/d m 
qN> > e- 

qo 1 ql qN m/df- 

be the continued fraction approximations of a/m, and choose n such that qn < e < 

qn+1. Then xl = qn, Yi = mPn -aqn is a solution for (5.1). The set of all solutions 
for (5.1) exclusively either consists of Ax1, Ay1, 1 < A < min(e/xi, f/lyiI), or else 

consists of xl, y, and X2, y2 with YlY2 < 0. In the latter case, we can determine 

X2, Y2 from Pn-i/qn-1 or Pn+1/qn+l in 0(log2 m) steps. 

Before we can prove this theorem, we need to establish a lemma from the theory 
of continued fraction approximations. Following Hardy and Wright [8, Section 10], 
we denote a continued fraction by 

[ao,a,, ...,an,... ]=ao+ la 1 

The nth convergent is given by 

Pn 
* ~ ~~~ -= [ao, al,, .,an] 

qn 

and satisfies Pn qn- P - pn -1qn = (-1)n-1. Notice that 

(5.2) [ao, al, ... , an, 1] = [ao, al, .. , an + 1, 

but this is the only amibiguity possible for the simple continued fraction expansion 
of a real number where ai, i > 0, are positive integers. 

LEMMA 5.1 ([8, Theorem 172]). If 

PZ+R 

QZ+S' 

where Z > 1 and P, Q, R, and S are integers such that 

Q > S > O, PS-QR = ?1, 

then R/S and P/Q are two consecutive convergents in the simple continued fraction 

expansion of x, provided we choose the left-hand side of (5.2) to resolve ambiguity. 

Proof. Consider the continued fraction expansion 

- = [aoIal, I an] = 
P 

From (5.2) it follows that we may choose n even or odd as we need it. Now let n 
be such that 

PSN- QR = (-l)n-c = Pnqn-d - Pn-lqnd 

Now GCD (Pi Q) = 1 and Q > O, hence P = Pn and Q = qn, and therefore 
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This implies that q, I (S - qn-), which by virtue of qn = Q > S > 0 and 
qn > qn-1 > 0 is only possible if S -qn- = 0. Therefore, R = Pn-i and 
S = qn-1, and 

x-= PnZ+Pn- implies x= [ao,ai,...,an,Z]. O 
qnZ + qn-1 

Proof of Theorem 5.1. Since m I ax + y, there exists an integer z such that 
y = mz - ax and thus d I y, which implies d < fyj < f. For Pn/qn we have, as in 
the proof of Lemma 3.1, 

- ~ ~~~ a_ Pn 1 1 
_ a- 

m qn qnqn+l qne 

therefore, fy, I = jaqn - mpn I < m/e < f . Notice that Yi # 0 because a/m # Pn /qn 
for qn < qN = m/d. 

We prove next that if xl, Y' also solve (5.1), and YPYi > 0, then yl/xl = yl/XI. 
Since xl(ax, + Yi) -x(ax' + 'i) 0 modm, we have Yixi-ylx1 0 modm. 
But lylill, jy1xll < (e - )(f-1) < m, hence ylxl = ',xi, which is our claim. 
Nonetheless, it can happen that GCD(xl, yl) = g $ 1, and therefore the assertion 
xI = Ax1, I = Ay1 needs proof. First we note that 

axl +Yi = mPn and GCD(pn,xx) = GCD(pnxqn) = 1- 

Thus, 

aA 0 +A8! = mPn-Omodm 
9 9 9 

if and only if g I A, since GCD(g,pn) = 1. 
Assume now that there exists a second solution X2, Y2 to (5.1) such that Y1Y2 < 0 

Let ax, + Yi = mzl, ax2 + Y2 = mz2. Again, by multiplying the first equation 
with X2, the second with xi and subtracting, we get x1y2 - X2Yl 0 modm. 
Since {xl Y2 1, fX2YlI < m and Y1 Y2 < 0, we must have Ixl Y2 -X2YI1 = m. Thus, 
mfxlz2 - x2zlI = Ix1y2 - x2ylI = m, which implies that 

(5.3) Ix1Z2 - X2Z1I = 1I 

One immediate conclusion from (5.3) is that no solutions proportional to either 
xi, y, or X2, Y2, the only other possible solutions (as shown before), can occur. For 
otherwise, for any of these solutions, say x, y, one has GCD(x, z) :# 1, where z is 
the corresponding, also proportional, multiplier of m. 

It is harder to show how this second solution X2, Y2 can be computed in case it 
exists. Surprisingly, this alternate solution can arise in two different ways. Without 
loss of generality, let us assume that X2 < xl. Notice that by this assumption we 
now only know that either xi, yi or x2, Y2 is the solution found as stated in the 
theorem. 

Case 1: IY21 > Ily1. Let Z = IY2/Y1I > 1. Then Zmzl = Zax1+Zy1 = Zax1-Y2, 
hence Zmz1 + mz2 = Zax1 + ax2, or 

a Zz1+ Z2 
m ZX1 + x2 

All conditions to Lemma 5.1 with P = zl, Q = xl, R = Z2, and S = x2 are 
now satisfied (refer in particular to (5.3)), and we can conclude that z2/x2 and 



COMPUTING GCD AND FACTORIZATIONS IN QUADRATIC NUMBER FIELDS 717 

zl/xl must be consecutive convergents to a/m. Therefore, X2 = qn-1 and Y2 = 

MPn-1 - aqn-. 
Case 2: IY21 < lylI. Consider for an integer k > 0, 

X3 = x1 + kx2, y3 = y1 + ky2, z3 = z1 + kz2, 

such that 

IY21 > IY31 and sign(y3) = -sign(y2). 

Now 

a ZZ3 + Z2 Z = Y2 > 1, Z3X2 - Z2X3 = ?1 
m Zx3 +x2 y3 

and Lemma 5.1 applies again. Therefore, z2/X2 and Z3/X3 are consecutive continued 
fraction approximations. Notice that Z = 1 is possible if and only if z2/X2 is the 
second to the last convergent of a/m. In that case, 

z3 a 
= [0,ai, ... , aN-1] where - = [0, a,, .. ,aN]- 

In order to compute x1 and Yi, we must find k. Since IYi I = IY3 - ky2l is monoton- 
ically increasing with k, we choose the smallest k such that X3 - kx2 < e - 1. In 
other words, the only possible value is 

k X3-ee +1 

Observe that xl = X3 - kx2 # x2, since GCD(x2, X3) = 1, and 

ax1+y1 _0modrm fory1 =Y3-kx2. 0 

The following example shows that all three types of solutions, namely either a 
single one, or two, or a family of proportional solutions do occur. 

Examples. Let m = 11, e = f = 4, a = 7. The continued fraction expansion of 
7/11 is [0,1,1,1,3] and the convergents are 0/1, 1/1, 1/2, 2/3, and 7/11. Hence, 
x1 = 3, y, = 2 *11 - 7 3 = 1, and X2 = 2, Y2 = 1 . 11 - 7 2 = -3 are the only 
solutions for (5.1) in this case. For a = 2, the only solution is 1 . 2 - 2 0 mod 11, 
but for a = 1, there are three solutions, 1 - 1 - 1 _ 2 1 - 2 3 1 - 3 0 mod 11. 

Next, let m = 244, a = 47, e = 7, and f = 39. The first three convergents are 
0/1, 1/5, and 5/26. Thus, X2 = 5 and Y2 = 244.1 - 47.5 = 9. The second solution 
is obtained from k = [(26-7 + 1)/51 = 4 as x1 = 26-4 .5 = 6 and Yi = 38. 

Finally, let m = 56, a = 21, e = 7, and f = 9. The continued fraction expansion 
of 21/56 is [0,2,1,2] and the convergents are 0/1, 1/2, 1/3, and 3/8. Thus, X2 = 3, 
Y2 =-7. We obtain z3/x3 = [0,2,1,1] = 2/5, k = r(5-7 + 1)/31=0, x1 = 5, and 
Yi=7. 0 

One application of Theorem 5.1, described by Wang [31] and others, is to recover 
rational numbers from their modular representations. Set y/x E Q and suppose 
we have found bounds e and f for the denominator and numerator, respectively. 
Then, having computed a = yx-1 mod m, GCD(x, m) = 1, (e - 1)(f - 1) < m, we 
can find y/x by continued fraction approximation. Unfortunately, we may get two 
possible fractions YI/x1, y2/x2 of opposite sign. One way to resolve the ambiguity 
is to choose the e twice the bound of the denominator and select the solution with 
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x < e/2, IYI < f. Wang, in fact, chooses m such that [ m/21 is a bound for 
both numerator and denominator. In this application, the existence of a solution 
is assumed and Thue's theorem does not come into play. 

We now apply Theorem 5.1 to the problem of factoring a rational prime p in 
the UFD Od, d fixed. We again must precondition our algorithm by factoring all 
rational primes smaller than 2V'j7b[ (V'h suffices for D > 0). First consider p t d. 
From Section 2 we know that p < v/P factors if and only if (D/p) = +1. In that 
case, a prime factor of p is ir = GCD(p, l + V'b), where 12 = D modulo p. We can 
compute l by either the Tonelli-Shanks algorithm (cf. D. Knuth [14, Section 4.6.2, 
Exercise 15]) or by Schoof's algorithm [26]. The latter is deterministic and runs 
in O(log8 p) steps, since Idl is fixed. The GCD algorithm of Section 3 can give us 
the wanted factor ir, but in this special case, Theorem 5.1 can be applied to our 
advantage. Let 

e = and f VF T1511. 

Then, (e - 1)(f - 1) <p < ef and 2 < e < f for p> VfibD[. Then we compute the 
continued fraction approximation to l/p and get integers x, y such that p I yl + x, 
0 < y < e, |x| < f. This solution satisfies 

0 (x + ly)(x - ly)-x2 - Dy2 modp, 

thus there exists an integer q with x2 - Dy2 = qp. By our bounds we get 

x2 -Dy2 <p/fi-D X = 2/fbj<p for D < 0, 

x2- Dy21 < max(x2, Dy2) < vD7p for D > 0, 

thus Iql < 2v/'i>i. 
In the other case p I d, p > '1, we have x2 _ Dy2 = qp with x = O, y = 1 

and q < v/ii. In both cases the factorization of q into primes q = l. tk in Od iS 

already known. Since Od is a UFD and 

(X + X8D) (x - X8D) = 1t * *Wk, 

-ti must divide x + V/iy or x - V/iy. Let -y be a maximum product of -tYi such 
that -t divides x + v/iy. Then q/l- divides x - V/iiy, and the prime factors of p 
are then (x + vDy)/-t and (x - V?_y)/(q/1-). To prove this, we only have to show 
that neither quotient is a unit. This follows from the fact that the division can only 
decrease the norm of the dividend. If one quotient became a unit, the other one 
would have to have the norm of their product, p2, which is larger than its original 
norm qp. 

We now discuss how to factor ( E Od with Od a unique iactorization domain. 
We first factor Ne = P1 ... Pk over the integers. If (d/pi) = +1 or pi divides d, we 

split Pi = 7riri by the 'algorithm discussed above. We thus obtain a factorization 
=,7= ir 7r,, and it remains to trial-divide ( by 7ri, 1 < i < 1, to determine which 

are its prime factors. 

6. Conclusion. We have described algorithms for taking the greatest common 

divisor and computing the prime factorization of numbers in quadratic fields with 



COMPUTING GCD AND FACTORIZATIONS IN QUADRATIC NUMBER FIELDS 719 

unique factorization. The methods also apply to computing canonical representa- 
tions of unions of ideals in quadratic number rings without unique factorization. 
Our algorithms are of polynomial running time provided we fix the discriminant. 
We have also shown how to reduce factorization in quadratic number rings with 
unique factorization to rational integer factorization. If the discriminant is large, 
say of order 1010, our algorithms unfortunately become impractical. Future inves- 
tigations will focus on how to treat these cases efficiently. 
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